Univariate modified Fourier methods for second order boundary value problems

نویسنده

  • Ben Adcock
چکیده

We develop and analyse a new spectral-Galerkin method for the numerical solution of linear, second order differential equations with homogeneous Neumann boundary conditions. The basis functions for this method are the eigenfunctions of the Laplace operator subject to these boundary conditions. Due to this property this method has a number of beneficial features, including an O(N) condition number and the availability of an optimal, diagonal preconditioner. This method offers a uniform convergence rate of O(N−3), however we show that by the inclusion of an additional 2M basis functions, this figure can be increased to O(N−2M−3) for any positive integer M .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multivariate modified Fourier series and application to boundary value problems

In this paper we analyse the approximation-theoretic properties of modified Fourier series in Cartesian product domains with coefficients from full and hyperbolic cross index sets. We show that the number of expansion coefficients may be reduced significantly whilst retaining comparable error estimates. In doing so we extend the univariate results of Iserles, Nørsett and S. Olver. We then demon...

متن کامل

Eigenfunction Expansions for Second-Order Boundary Value Problems with Separated Boundary Conditions

In this paper, we investigate some properties of eigenvalues and eigenfunctions of boundary value problems with separated boundary conditions. Also, we obtain formal series solutions for some partial differential equations associated with the second order differential equation, and study necessary and sufficient conditions for the negative and positive eigenvalues of the boundary value problem....

متن کامل

NUMERICAL SOLUTIONS OF SECOND ORDER BOUNDARY VALUE PROBLEM BY USING HYPERBOLIC UNIFORM B-SPLINES OF ORDER 4

In this paper, using the hyperbolic uniform spline of order 4 we develop the classes of methods for the numerical solution of second order boundary value problems (2VBP) with Dirichlet, Neumann and Cauchy types boundary conditions. The second derivativeis approximated by the three-point central difference scheme. The approximate results, obtained by the proposed method, confirm theconvergence o...

متن کامل

An ‎E‎ffective Numerical Technique for Solving Second Order Linear Two-Point Boundary Value Problems with Deviating Argument

Based on reproducing kernel theory, an effective numerical technique is proposed for solving second order linear two-point boundary value problems with deviating argument. In this method, reproducing kernels with Chebyshev polynomial form are used (C-RKM). The convergence and an error estimation of the method are discussed. The efficiency and the accuracy of the method is demonstrated on some n...

متن کامل

‎A Consistent and Accurate Numerical Method for Approximate Numerical Solution of Two Point Boundary Value Problems

In this article we have proposed an accurate finite difference method for approximate numerical solution of second order boundary value problem with Dirichlet boundary conditions. There are numerous numerical methods for solving these boundary value problems. Some these methods are more efficient and accurate than others with some advantages and disadvantages. The results in experiment on model...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008